Acta Crystallographica Section C
Crystal Structure
Communications
ISSN 0108-2701

Bis(1-acetonylpyridinium) pyridinium hexaiodobismuth(III)

Ying Peng, Shaofang Lu,* Daxu Wu, Qiangjin Wu and Jianquan Huang

Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, People's Republic of China
Correspondence e-mail: Isf@ms.fjirsm.ac.cn

Received 9 March 2000
Accepted 5 April 2000

Data validation number: IUC0000097
The crystal structure of the title complex, $\left(\mathrm{C}_{8} \mathrm{H}_{10} \mathrm{~N}\right)_{2^{-}}$ $\left(\mathrm{C}_{5} \mathrm{H}_{6} \mathrm{~N}\right)\left[\mathrm{BiI}_{6}\right]$, contains discrete $\left[\mathrm{BiI}_{6}\right]^{3-}$ anions, and $\left(\mathrm{HNC}_{5} \mathrm{H}_{5}\right)^{+}$and $\left(\mathrm{CH}_{3} \mathrm{COCH}_{2} \mathrm{NC}_{5} \mathrm{H}_{5}\right)^{+}$cations separated by normal van der Waals contacts. The $\left[\mathrm{BiI}_{6}\right]^{3-}$ anion has the Bi atom on an inversion centre. The $\left(\mathrm{HNC}_{5} \mathrm{H}_{5}\right)^{+}$cation also lies about an inversion centre and is disordered. The $\left(\mathrm{CH}_{3} \mathrm{COCH}_{2} \mathrm{NC}_{5} \mathrm{H}_{5}\right)^{+}$cation lies in a general position.

Comment

In our systematic investigation of the hybrid $\mathrm{Mo}(\mathrm{W})$ maingroup metal clusters, we have synthesized successfully the hybrid cluster $\left[\mathrm{Mo}_{3}\left(\mathrm{BiI}_{3}\right) \mathrm{S}_{4}(\mathrm{OAc})(\mathrm{dtp})_{3}(\mathrm{py})\right]$ (Lu et al., 1997) from the reaction of the trimolybdenum cluster $\left[\mathrm{Mo}_{3}\left(\mu_{3}-\mathrm{S}\right)(\mu-\right.$ $\left.\mathrm{S}_{3}(\mu-\mathrm{OAc})(\mathrm{dtp})_{3}(\mathrm{py})\right]$ with $\mathrm{BiI}_{3}\left[\mathrm{dtp}=\mathrm{S}_{2} \mathrm{P}\left(\mathrm{OC}_{2} \mathrm{H}_{5}\right)_{2}{ }^{-}\right.$and $\mathrm{OAc}=\mathrm{CH}_{3} \mathrm{COO}^{-}$]. When we changed the reaction conditions and used $\left[\mathrm{Mo}_{3} \mathrm{~S}_{4}(\mathrm{dtp})_{4}\left(\mathrm{H}_{2} \mathrm{O}\right)\right]$, $\mathrm{BiI}_{3}, \mathrm{NaOAc} \cdot 3 \mathrm{H}_{2} \mathrm{O}$ and $\mathrm{KS}_{2} \mathrm{CN}\left(\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{OH}\right)_{2}$ as the starting materials to perform the reaction in the presence of acetone and pyridine, an unexpected complex, $\left[\left(\mathrm{BiI}_{6}\right)\left(\mathrm{CH}_{3} \mathrm{COCH}_{2} \mathrm{NC}_{5} \mathrm{H}_{5}\right)_{2}\left(\mathrm{HNC}_{5} \mathrm{H}_{5}\right)\right]$, was obtained. Although there are some reports about relevant complexes such as $\mathrm{Ag}_{3} \mathrm{BiI}_{6}$ (Dzeranova et al., 1985) and $\mathrm{Cs}_{3} \mathrm{BiI}_{6}$ (Dzeranova et al., 1984), their crystal structures have not been reported.

In the structure of the title complex, (I), the Bi center exhibits an octahedral geometry with approximate O_{h} symmetry. A $\mathrm{Bi}-\mathrm{I}$ distance of ca $3.08 \AA$ is comparable with that in $\mathrm{BiI}_{3}(3.10 \AA$; Wells, 1975), which has an octahedral layer structure. Obviously, the formation of $\left[\mathrm{BiI}_{6}\right]^{3-}$ should be through the reaction of BiI_{3} with I^{-}. To meet the requirements of the electrovalent balance of the molecule, $\left[\mathrm{CH}_{3} \mathrm{CO}\right.$ $\mathrm{CH}_{2} \mathrm{NC}_{5} \mathrm{H}_{5}$] must be a cation. The ${ }^{1} \mathrm{H}$ NMR spectrum in DMSO- d_{6} of this complex shows the signals of CH_{2} and CH_{3} at $\delta 5.66$ and 2.28 p.p.m., respectively, for $\left[\mathrm{CH}_{3} \mathrm{COCH}_{2} \mathrm{NC}_{5} \mathrm{H}_{5}\right]^{+}$ and reveals two types of pyridine groups in a 1:2 ratio for $\left(\mathrm{HNC}_{5} \mathrm{H}_{5}\right)^{+}$and $\left(\mathrm{CH}_{3} \mathrm{COCH}_{2} \mathrm{NC}_{5} \mathrm{H}_{5}\right)^{+}$, respectively. It seems that this novel cation $\left[\mathrm{CH}_{3} \mathrm{COCH}_{2} \mathrm{NC}_{5} \mathrm{H}_{5}\right]^{+}$resulted from the
stepwise reaction of acetone, halogen $\left(\mathrm{I}_{2}\right)$ and pyridine. But the reaction details are not yet known.

(I)

Experimental

For the preparation of (I), $\left[\mathrm{Mo}_{3} \mathrm{~S}_{4}(\mathrm{dtp})_{4}\left(\mathrm{H}_{2} \mathrm{O}\right)\right] \quad(0.1 \mathrm{~g})$, $\mathrm{KS}_{2} \mathrm{CN}\left(\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{OH}\right)_{2}(0.1 \mathrm{~g}), \mathrm{Na}(\mathrm{OAc}) \cdot 3 \mathrm{H}_{2} \mathrm{O}(0.03 \mathrm{~g})$ and 0.1 ml pyridine were dissolved in 10 ml dichloromethane, then stirred for $10 \mathrm{~min} . \mathrm{BiI}_{3}(0.1 \mathrm{~g})$ in 8 ml acetone was added in the resulting solution. The mixture was stirred for 1 h and filtered, then evaporated in air. After two weeks, red crystals were obtained. The metal elements of the complex were proved to be Bi by ICP-AES analysis.

Crystal data

$$
\begin{array}{ll}
\left(\mathrm{C}_{8} \mathrm{H}_{10} \mathrm{NO}\right)_{2}\left(\mathrm{C}_{5} \mathrm{H}_{6} \mathrm{~N}\right)\left[\mathrm{BiI}_{6}\right] & D_{x}=2.572 \mathrm{Mg} \mathrm{~m}^{-3} \\
M_{r}=1322.83 & \text { Mo } K \alpha \text { radiation } \\
\text { Monoclinic, } P 2_{1} / n & \text { Cell parameters from } 20 \\
a=10.675(2) \AA & \text { reflections } \\
b=11.083(2) \AA & \theta=7.95-12.94^{\circ} \\
c=15.195(3) \AA & \mu=10.605 \mathrm{~mm}^{-1} \\
\beta=108.19(3)^{\circ} & T=293(2) \mathrm{K} \\
V=1707.9(6) \AA^{3} & \text { Prism, red } \\
Z=2 & 0.13 \times 0.13 \times 0.10 \mathrm{~mm}
\end{array}
$$

Data collection

Rigaku AFC-5R diffractometer $\omega-2 \theta$ scans
Absorption correction: ψ scan
(North et al., 1968)
$T_{\text {min }}=0.261, T_{\text {max }}=0.346$
3358 measured reflections
3358 independent reflections
2264 reflections with $I>2 \sigma(I)$
$\theta_{\text {max }}=26.0^{\circ}$
$h=0 \rightarrow 13$
$k=0 \rightarrow 13$
$l=-18 \rightarrow 17$
3 standard reflections every 300 reflections frequency: 120 min intensity decay: 3.4\%

Refinement

Refinement on F^{2}	H -atom parameters constrained
$R(F)=0.036$	$w=1 /\left[\sigma^{2}\left(F_{o}{ }^{2}\right)\right]$
$w R\left(F^{2}\right)=0.091$	$(\Delta / \sigma)_{\max }=0.001$
$S=1.039$	$\Delta \rho_{\max }=0.94 \mathrm{e} \AA^{-3}$
3358 reflections	$\Delta \rho_{\min }=-1.00 \mathrm{e}^{-3}$
151 parameters	

Table 1
Selected geometric parameters ($\left({ }^{\circ},{ }^{\circ}\right)$.

Bi1-I2	$3.0772(9)$	Bi1-I1	$3.0871(8)$
$\mathrm{Bi} 1-\mathrm{I} 3$	$3.0850(9)$		
$\mathrm{I} 2-\mathrm{Bi} 1-\mathrm{I} 3$	$88.50(3)$	$\mathrm{I} 3-\mathrm{Bi} 1-\mathrm{I} 1$	$90.91(3)$
$\mathrm{I} 2-\mathrm{Bi} 1-\mathrm{I} 1$	$88.82(3)$		

The three crystallographically independent positions (C9, C10 and $\mathrm{C} 11)$ in a centrosymmetric six-membered ring of the $\left(\mathrm{HNC}_{5} \mathrm{H}_{5}\right)^{+}$

electronic papers

cation exist a statistical distribution of C and N with an occupancy of 1.028 of a C atom (i.e. $\frac{5}{6} \mathrm{C}+\frac{1}{6} \mathrm{~N}$). All calculations were performed using the SHELXTL (Sheldrick, 1995) program package. The distance between the deepest hole and the 3 atom is $0.92 \AA$, so this hole can be referred to as the ghost of the I3 atom.

This study was supported by the National Natural Science Foudation of China, the NSF of Fujian Province and the State Key Laboratory of Structural Chemistry.

References

Dzeranova, K. B., Kaloev, N. I. \& Bukhalova, G. A. (1985). Zh. Neorg. Khim. 30, 2983-2985.
Dzeranova, K. B., Kaloev, N. I., Egerev, O. I. \& Bukhalova, G. A. (1984). Zh. Neorg. Khim. 29, 3171-3172.
Lu, S.-F., Huang, J.-Q., Wu, Q.-J., Huang, X.-Y., Yu, R.-M., Zheng,Y. \& Wu, D.-X. (1997). Inorg. Chim. Acta, 261, 201-209.

North, A. C. T., Phillips, D. C. \& Mathews, F. S. (1968). Acta Cryst. A24, 351359.

Wells, A. F. (1975). Structural Inorganic Chemistry, 4th ed., p. 707. Oxford: Clarendon Press.
Sheldrick, G. M. (1995). SHELXTL. Version 5. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.

